Erk signaling activity iIs enhanced during collective migration on corrugated sulbstrates
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Collective migration plays a pivotal role in numerous epithelial tissues, under both physiological and pathological conditions. Recent evidence suggests a correlation
between the activation waves of exiracellular signal-regulated kinase (ERK) and cell deformation, which together orchesirate collective cell migration. Additionally,
emerging evidence indicates that localized changes in matrix curvature can influence the migration of individual epithelial cells (known as curvotaxis). However, the
precise mechanism by which local changes in curvature modulate ERK propagation and contribute to coordinating collective movement remains unclear. Here we
utilize a photopolymerization technique to create well-defined corrugation patterns of varying wavelengths in soft hydrogels, thereby mimicking the multiscale
curvature found in human tissues. To elucidate the role of ERK waves in directing cell migration, we employ Forster resonance energy transfer (FRET)-based biosensor in
MDCK cells, conducting time-lapse experiments lasting 24 hours on culture substrates featuring both flat and corrugated regions. Our findings reveal distinct flow
directions within the same epithelial tissue, fransitioning from flat to corrugated hydrogels. Furthermore, we demonsirate that ERK activity is significantly heightened in
corrugated regions, suggesting a mechanism that facilitates collective cell migration on curved substrates.
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= Cell stretching promotes ERK activity via mechanical forces through hi
adherens junctions

= ERK waves propagate towards the back side in a opposite direction of
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Substrate corrugation patterns control

the direction of the collective cell flow
(the red arrow indicates the axis of corrugation)
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